Run a SMC^2. This is experimental and subject to change. Use at your own risk.

smc2(pars, filter, control)

Arguments

pars

A smc2_parameters object containing information about parameters (ranges, priors, proposal kernel, translation functions for use with the particle filter).

filter

A particle_filter object

control

A smc2_control object to control the behaviour of the algorithm

Value

A smc2_result object, with elements

  • pars: a matrix of sampled parameters (n_parameter_set long)

  • probabilities: a matrix of probabilities (log_prior, log_likelihood, log_posterior and weight). The latter is the log posterior normalised over all samples

  • statistics: interesting or useful statistics about your sample, including the ess (effective sample size, over time), acceptance_rate (where a regeneration step was done, the acceptance rate), n_particles, n_parameter_sets and n_steps (inputs to the simulation). The effort field is a rough calculation of the number of particle-filter runs that this run was worth.

Examples

# We use an example from dust which implements an epidemiological SIR
# (Susceptible-Infected-Recovered) model; see vignette("sir_models")
# for more background, as this example follows from the pMCMC example
# there

# The key tuning here is the number of particles per filter and number
# of parameter sets to consider simultaneously. Ordinarily these would
# be set (much) higher with an increase in computing time
n_particles <- 42
n_parameter_sets <- 20

# Basic epidemiological (Susceptible-Infected-Recovered) model
sir <- dust::dust_example("sir")

# Pre-computed incidence data
incidence <- read.csv(system.file("sir_incidence.csv", package = "mcstate"))

# Annotate the data so that it is suitable for the particle filter to use
dat <- mcstate::particle_filter_data(incidence, "day", 4, 0)

# Subset the output during run
index <- function(info) {
  list(run = 5L)
}

# The comparison function, used to compare simulated data with observe
# data, given the above subset
compare <- function(state, observed, pars) {
  exp_noise <- 1e6
  incidence_modelled <- state[1L, , drop = TRUE]
  incidence_observed <- observed$cases
  lambda <- incidence_modelled +
    rexp(n = length(incidence_modelled), rate = exp_noise)
  dpois(x = incidence_observed, lambda = lambda, log = TRUE)
}

# Finally, construct the particle filter:
filter <- mcstate::particle_filter$new(dat, sir, n_particles, compare,
                                       index = index)

# To control the smc2 we need to specify the parameters to consider
pars <- mcstate::smc2_parameters$new(
  list(
    mcstate::smc2_parameter("beta",
                            function(n) runif(n, 0, 1),
                            function(x) dunif(x, 0, 1, log = TRUE),
                            min = 0, max = 1),
    mcstate::smc2_parameter("gamma",
                            function(n) runif(n, 0, 1),
                            function(x) dunif(x, 0, 1, log = TRUE),
                            min = 0, max = 1)))
control <- mcstate::smc2_control(n_parameter_sets, progress = TRUE)

# Then we run the particle filter
res <- mcstate::smc2(pars, filter, control)
#> Finished 100 steps in 1 secs

# This returns quite a lot of information about the fit, and this will
# change in future versions
res
#> $pars
#>            beta      gamma
#>  [1,] 0.3093155 0.18301115
#>  [2,] 0.1911669 0.09043611
#>  [3,] 0.3907869 0.22471620
#>  [4,] 0.2153920 0.11965343
#>  [5,] 0.2029480 0.08585487
#>  [6,] 0.1386245 0.03068581
#>  [7,] 0.4913324 0.30836149
#>  [8,] 0.6128431 0.27551790
#>  [9,] 0.1574880 0.02922703
#> [10,] 0.2165904 0.09988620
#> [11,] 0.2504913 0.08748742
#> [12,] 0.2349047 0.12025240
#> [13,] 0.4534552 0.14185847
#> [14,] 0.6092114 0.23627732
#> [15,] 0.5464832 0.21336094
#> [16,] 0.5354779 0.21819638
#> [17,] 0.3819656 0.11899958
#> [18,] 0.4627995 0.18108103
#> [19,] 0.4365939 0.18008579
#> [20,] 0.2299612 0.08552151
#> 
#> $probabilities
#>       log_prior log_likelihood log_posterior       weight
#>  [1,]         0      -252.6342     -252.6342 9.372691e-05
#>  [2,]         0      -249.0119     -249.0119 3.507459e-03
#>  [3,]         0      -255.6199     -255.6199 4.733299e-06
#>  [4,]         0      -246.4818     -246.4818 4.403647e-02
#>  [5,]         0      -247.3477     -247.3477 1.852518e-02
#>  [6,]         0      -261.2342     -261.2342 1.725602e-08
#>  [7,]         0      -257.6297     -257.6297 6.343559e-07
#>  [8,]         0      -286.1875     -286.1875 2.510975e-19
#>  [9,]         0      -282.5354     -282.5354 9.680940e-18
#> [10,]         0      -246.1817     -246.1817 5.944924e-02
#> [11,]         0      -266.1283     -266.1283 1.292600e-10
#> [12,]         0      -243.4933     -243.4933 8.743790e-01
#> [13,]         0      -358.7733     -358.7733 7.519999e-51
#> [14,]         0      -358.2318     -358.2318 1.292459e-50
#> [15,]         0      -294.4855     -294.4855 6.252750e-23
#> [16,]         0      -288.1854     -288.1854 3.405467e-20
#> [17,]         0      -320.4043     -320.4043 3.464707e-34
#> [18,]         0      -296.8766     -296.8766 5.722980e-24
#> [19,]         0      -277.0725     -277.0725 2.282691e-15
#> [20,]         0      -255.9242     -255.9242 3.491769e-06
#> 
#> $statistics
#> $statistics$ess
#>   [1] 15.816943 11.301591  9.580949 12.655357 10.057373  9.477349 12.149554
#>   [8] 10.798700  8.500094 13.220614 11.093068  6.046357 10.082006  8.858798
#>  [15]  7.945963  5.354276  3.833227  2.721528  3.411812  4.620651  2.272063
#>  [22]  3.622429  1.321429  1.971645  3.284305  4.251124  3.151735  2.084010
#>  [29]  1.816593  2.399074  3.860173  3.669836  8.469251  6.198018 15.683858
#>  [36] 12.611303 11.676231 11.033467 10.192990  9.267872 18.603920 15.985515
#>  [43] 17.221367 12.024333 11.282999  8.538440 16.909230 17.182555 16.076947
#>  [50] 14.234458 13.000213 12.333011 11.462462 10.655559  9.411526 16.910551
#>  [57] 17.166109 15.822495 15.190905 12.881715 12.671453 12.393773 11.654590
#>  [64] 11.407807 10.708538  9.881198 15.493470 17.523067 16.390716 15.330937
#>  [71] 13.233933 13.588038 12.926980 13.933442 13.238797 11.948426 10.325479
#>  [78] 10.164376  8.878644 19.193786 16.739856 14.211743 16.487422 15.942664
#>  [85] 14.696732 14.612732 13.887976 12.566439 11.443178  9.613109  5.505015
#>  [92] 13.551766 14.985555 14.855052 15.349661 12.438938 11.623082 12.637786
#>  [99]  9.934752 18.390931
#> 
#> $statistics$acceptance_rate
#>   [1]   NA   NA 0.75   NA   NA 0.60   NA   NA 0.50   NA   NA 0.45   NA 0.55 0.45
#>  [16] 0.50 0.70 0.30 0.50 0.30 0.35 0.30 0.45 0.40 0.35 0.45 0.45 0.50 0.55 0.50
#>  [31] 0.60 0.55 0.50 0.60   NA   NA   NA   NA   NA 0.50   NA   NA   NA   NA   NA
#>  [46] 0.30   NA   NA   NA   NA   NA   NA   NA   NA 0.35   NA   NA   NA   NA   NA
#>  [61]   NA   NA   NA   NA   NA 0.05   NA   NA   NA   NA   NA   NA   NA   NA   NA
#>  [76]   NA   NA   NA 0.40   NA   NA   NA   NA   NA   NA   NA   NA   NA   NA 0.35
#>  [91] 0.25   NA   NA   NA   NA   NA   NA   NA 0.50   NA
#> 
#> $statistics$n_particles
#> [1] 42
#> 
#> $statistics$n_parameter_sets
#> [1] 20
#> 
#> $statistics$n_steps
#> [1] 100
#> 
#> $statistics$effort
#> [1] 240
#> 
#> 
#> attr(,"class")
#> [1] "smc2_result"

# Most useful is likely the predict method:
predict(res)
#>            beta     gamma
#>  [1,] 0.2349047 0.1202524
#>  [2,] 0.2349047 0.1202524
#>  [3,] 0.2153920 0.1196534
#>  [4,] 0.2165904 0.0998862
#>  [5,] 0.2349047 0.1202524
#>  [6,] 0.2349047 0.1202524
#>  [7,] 0.2153920 0.1196534
#>  [8,] 0.2349047 0.1202524
#>  [9,] 0.2349047 0.1202524
#> [10,] 0.2349047 0.1202524
#> [11,] 0.2349047 0.1202524
#> [12,] 0.2349047 0.1202524
#> [13,] 0.2349047 0.1202524
#> [14,] 0.2349047 0.1202524
#> [15,] 0.2349047 0.1202524
#> [16,] 0.2349047 0.1202524
#> [17,] 0.2349047 0.1202524
#> [18,] 0.2349047 0.1202524
#> [19,] 0.2349047 0.1202524
#> [20,] 0.2349047 0.1202524