Python/matplotlib wrapper for creating visualizations from MINTe results.
This function calls the underlying Python minte.create_scenario_plots()
function and returns matplotlib figure objects.
Note: For native R plotting with ggplot2, use plot_prevalence() or
plot_cases() instead, which provide the same functionality using R's
ggplot2 graphics system.
Arguments
- results
A data frame of results (e.g., from
results$prevalence).- output_dir
Character. Directory to save plots. If NULL, plots are returned but not saved.
- plot_type
Character. Type of plot: "individual", "combined", or "both".
- predictor
Character. Predictor type ("prevalence" or "cases"). Auto-detected if NULL.
- window_size
Integer. Days per timestep. Default 14.
- plot_tight
Logical. Use tight y-axis scaling. Default FALSE.
- figsize_combined
Numeric vector of length 2. Figure size for combined plot.
- figsize_individual
Numeric vector of length 2. Figure size for individual plots.
- dpi
Integer. DPI for saved figures. Default 300.
Value
A list of matplotlib figure objects (Python objects). These can be saved to files but are not directly viewable in R graphics devices.
See also
plot_prevalence()for native R/ggplot2 prevalence plotsplot_cases()for native R/ggplot2 cases plots
Examples
if (FALSE) { # \dontrun{
results <- run_minter_scenarios(...)
# Save matplotlib plots to files
plots <- create_scenario_plots_mpl(
results$prevalence,
output_dir = "plots/",
plot_type = "both"
)
# For interactive R plotting, use the native functions instead:
p <- plot_prevalence(results)
print(p)
} # }