Skip to contents

Main entry point for running malaria intervention scenarios using the MINTe neural network emulator. This function takes intervention parameters and returns predicted prevalence and clinical cases over time.

Usage

run_minter_scenarios(
  scenario_tag = NULL,
  res_use,
  py_only,
  py_pbo,
  py_pyrrole,
  py_ppf,
  prev,
  Q0,
  phi,
  season,
  routine,
  irs,
  irs_future,
  lsm,
  itn_future = NULL,
  net_type_future = NULL,
  predictor = c("prevalence", "cases"),
  benchmark = FALSE
)

Arguments

scenario_tag

Character vector. Tags/names for each scenario.

res_use

Numeric vector. Current resistance level (0-1).

py_only

Numeric vector. Pyrethroid-only net coverage (0-1).

py_pbo

Numeric vector. PBO net coverage (0-1).

py_pyrrole

Numeric vector. Pyrrole net coverage (0-1).

py_ppf

Numeric vector. PPF net coverage (0-1).

prev

Numeric vector. Current under-5 prevalence (0-1).

Q0

Numeric vector. Indoor biting proportion (0-1).

phi

Numeric vector. Bednet usage proportion (0-1).

season

Numeric vector. Seasonality indicator (0 = perennial, 1 = seasonal).

routine

Numeric vector. Routine treatment coverage (0-1).

irs

Numeric vector. Current IRS coverage (0-1).

irs_future

Numeric vector. Future IRS coverage (0-1).

lsm

Numeric vector. LSM (Larval Source Management) coverage (0-1).

itn_future

Numeric vector. Future ITN coverage (0-1). Optional.

net_type_future

Character vector. Future net type. One of "py_only", "py_pbo", "py_pyrrole", "py_ppf". Optional.

predictor

Character vector. Which predictions to run: "prevalence", "cases", or both. Default is c("prevalence", "cases").

benchmark

Logical. If TRUE, print timing benchmarks. Default FALSE.

Value

A list of class "minter_results" containing:

prevalence

Data frame of prevalence predictions over time

cases

Data frame of clinical case predictions over time

scenario_meta

Data frame with per-scenario metadata

eir_valid

Logical indicating if EIR is within calibrated range

benchmarks

List of timing information (if benchmark=TRUE)

Examples

if (FALSE) { # \dontrun{
# Single scenario
results <- run_minter_scenarios(
  scenario_tag = "example",
  res_use = 0.3,
  py_only = 0.4,
  py_pbo = 0.3,
  py_pyrrole = 0.2,
  py_ppf = 0.1,
  prev = 0.25,
  Q0 = 0.92,
  phi = 0.85,
  season = 1,
  routine = 0.1,
  irs = 0.0,
  irs_future = 0.3,
  lsm = 0.0
)

# Access results
head(results$prevalence)
head(results$cases)
} # }