0. Prepare webtool GeoJSON input

The MVP version of Naomi web tool allows upload of a single GeoJSON file for specifying the area hierarchy. This preprocessing step joins the area tables into a single long format dataset and saves as a GeoJSON for upload to the web tool.

1. (Up)Load data inputs

Area hierarchy and boundaries

area_merged <- read_sf(system.file("extdata/demo_areas.geojson", package = "naomi"))

Population data

pop_agesex <- read_csv(system.file("extdata/demo_population_agesex.csv", package = "naomi"))

Survey data

survey_hiv_indicators <- read_csv(system.file("extdata/demo_survey_hiv_indicators.csv", package = "naomi"))

Programme data

art_number <- read_csv(system.file("extdata/demo_art_number.csv", package = "naomi"))
anc_testing <- read_csv(system.file("extdata/demo_anc_testing.csv", package = "naomi"))

Programme data

Spectrum PJNZ

pjnz <- system.file("extdata/demo_mwi2024_v6.36.pjnz", package = "naomi")
spec <- extract_pjnz_naomi(pjnz)
#> Warning in normalizePath(zipfile): path[1]="": No such file or directory
#> Warning in normalizePath(zipfile): path[1]="": No such file or directory
#> Error in zip::unzip(path, exdir = unzip_dir): zip error: Cannot open zip file `` for reading in file zip.c:137

2. Choose model areas and time points

The following are required to be provided to define the model state space:

  • scope: A collection of area_ids defining the set of areas to be modelled. Usually this is simply national level, so the level 0 area_id.
  • level: Area level at which to fit model.
  • quarter_id_t1: The first time point for the model–approximately the midpoint of the household survey data used.
  • quarter_id_t2: The second time point for the model–the current time for which estimates are needed.
  • quarter_id_t3: The third time point for the model–the future projection for HIV estimates.
scope <- "MWI"
level <- 4
calendar_quarter_t1 <- "CY2020Q3"
calendar_quarter_t2 <- "CY2023Q4"
calendar_quarter_t3 <- "CY2024Q3"
calendar_quarter_t4 <- "CY2025Q3"
calendar_quarter_t5 <- "CY2026Q3"

The following select data inputs to model fitting from the uploaded datasets. Providing NULL for any will exclude that data source from model fitting.

  • Multiple household survey may be used in fitting, but they must be rougly contemporaneous around quarter_id_t1.
  • Only survey ART coverage or survey VLS should be included from a given survey, not both. ART coverage is preferred if both are available.
  • artnum_quarter_id_t1 and artnum_quarter_id_t1 are the time point at which current on ART programme data will be used to estimte ART coverage. They are typically the same quarter_id_t1 and quarter_id_t2 if ART programme data are used.
  • anc_quarter_id_t1 and anc_quarter_id_t2 are typically a range of 3-4 quarters. Data will be aggregated over these quarters for a larger sample size. They will typically be consecutive quarters, though a quarter could be dropped for example if there were reporting problems known to affect a given quarter. Survey IDs to include in fitting
prev_survey_ids  <- "DEMO2020PHIA"
artcov_survey_ids  <- "DEMO2020PHIA"
vls_survey_ids <- NULL
recent_survey_ids <- "DEMO2020PHIA"

artnum_calendar_quarter_t1 <- "CY2020Q3"
artnum_calendar_quarter_t2 <- "CY2023Q4"

anc_clients_year2 <- 2023
anc_clients_year2_num_months <- 12

anc_prevalence_year1 <- 2020
anc_prevalence_year2 <- 2023

anc_art_coverage_year1 <- 2020
anc_art_coverage_year2 <- 2023

3. Review input data

4. Prepare model inputs

Setup the model

naomi_mf <- naomi_model_frame(area_merged,
                              pop_agesex,
                              spec,
                              scope = scope,
                              level = level,
                              calendar_quarter1 = calendar_quarter_t1,
                              calendar_quarter2 = calendar_quarter_t2,
                              calendar_quarter3 = calendar_quarter_t3,
                              calendar_quarter4 = calendar_quarter_t4,
                              calendar_quarter5 = calendar_quarter_t5,
                              spectrum_population_calibration = "national",
                              output_aware_plhiv = TRUE,
                              artattend = TRUE,
                              artattend_t2 = FALSE,
                              anchor_home_district = TRUE,
                              artattend_log_gamma_offset = -4L,
                              adjust_area_growth = TRUE)
#> Error in UseMethod("filter"): no applicable method for 'filter' applied to an object of class "function"

Prepare data inputs

naomi_data <- select_naomi_data(
  naomi_mf = naomi_mf,
  survey_hiv_indicators = survey_hiv_indicators,
  anc_testing = anc_testing,
  art_number = art_number,
  prev_survey_ids = prev_survey_ids,
  artcov_survey_ids = artcov_survey_ids,
  recent_survey_ids = recent_survey_ids,
  vls_survey_ids = vls_survey_ids,
  artnum_calendar_quarter_t1 = artnum_calendar_quarter_t1,
  artnum_calendar_quarter_t2 = artnum_calendar_quarter_t2,
  anc_clients_year_t2 = anc_clients_year2,
  anc_clients_year_t2_num_months = anc_clients_year2_num_months,
  anc_prev_year_t1 = anc_prevalence_year1,
  anc_prev_year_t2 = anc_prevalence_year2,
  anc_artcov_year_t1 = anc_art_coverage_year1,
  anc_artcov_year_t2 = anc_art_coverage_year2
)
#> Error in eval(expr, envir, enclos): object 'naomi_mf' not found
  1. Fit model Prepare model inputs and initial parameters
tmb_inputs <- prepare_tmb_inputs(naomi_data)
#> Error in eval(expr, envir, enclos): object 'naomi_data' not found

Fit the TMB model

fit <- fit_tmb(tmb_inputs)
#> Error in eval(expr, envir, enclos): object 'tmb_inputs' not found

Calculate model outputs. We can calculate outputs based on posterior mode estimates before running report_tmb() to calculate posterior intervals.

outputs <- output_package(fit, naomi_data)
#> Error in eval(expr, envir, enclos): object 'fit' not found

The output package consists of a data frame of indicators and metadata defining the labels for each indicator.

names(outputs)
#> Error in eval(expr, envir, enclos): object 'outputs' not found

If uncertainty has not been calcualted yet, the output object retures values for mode, but not mean or lower and upper 95% uncertainty ranges.

outputs$indicators %>%
  dplyr::filter(
    indicator == "prevalence",  # HIV prevalence
    age_group == "Y015_049"   # Age group 15-49
  ) %>%
  head()
#> Error in eval(expr, envir, enclos): object 'outputs' not found

The function add_output_labels() returns the indicators table with labels added as additional columns.

add_output_labels(outputs) %>%
  dplyr::filter(
    indicator == "prevalence",  # HIV prevalence
    age_group == "Y015_049"   # Age group 15-49
  ) %>%
  head()
#> Error in eval(expr, envir, enclos): object 'outputs' not found

Calculate uncertainty ranges and add to the output object (This is time consuming and memory intensive.

system.time(fit <- sample_tmb(fit))
#> Error in eval(expr, envir, enclos): object 'fit' not found
#> Timing stopped at: 0 0 0

Regenerate outputs with uncertainty ranges.

system.time(outputs <- output_package(fit, naomi_data))
#> Error in eval(expr, envir, enclos): object 'fit' not found
#> Timing stopped at: 0.001 0 0

outputs_calib <- calibrate_outputs(outputs, naomi_mf,
                                   spectrum_plhiv_calibration_level = "national",
                                   spectrum_plhiv_calibration_strat = "sex_age_group",
                                   spectrum_artnum_calibration_level = "national",
                                   spectrum_artnum_calibration_strat = "sex_age_group",
                                   spectrum_aware_calibration_level = "national",
                                   spectrum_aware_calibration_strat = "sex_age_group",
                                   spectrum_infections_calibration_level = "national",
                                   spectrum_infections_calibration_strat = "sex_age_group")
#> Error in eval(expr, envir, enclos): object 'outputs' not found


outputs$indicators %>%
  dplyr::filter(
    indicator == "prevalence",  # HIV prevalence
    age_group == "Y015_049"   # Age group 15-49
  ) %>%
  head()
#> Error in eval(expr, envir, enclos): object 'outputs' not found

Save model outputs to ZIP

dir.create("outputs", showWarnings = FALSE)
save_output_package(outputs, "demo_outputs", "outputs", with_labels = FALSE)
#> Error in eval(expr, envir, enclos): object 'outputs' not found
save_output_package(outputs, "demo_outputs_with_labels", "outputs", with_labels = TRUE)
#> Error in eval(expr, envir, enclos): object 'outputs' not found
save_output_package(outputs, "demo_outputs_single_csv", "outputs", with_labels = TRUE, single_csv = TRUE)
#> Error in eval(expr, envir, enclos): object 'outputs' not found
save_output_package(outputs, "demo_outputs_single_csv_unlabelled", "outputs", with_labels = FALSE, single_csv = TRUE)
#> Error in eval(expr, envir, enclos): object 'outputs' not found


## #' 6. Plot some model outputs

indicators <- add_output_labels(outputs) %>%
  left_join(outputs$meta_area %>% select(area_level, area_id, center_x, center_y)) %>%
  sf::st_as_sf()
#> Error in eval(expr, envir, enclos): object 'outputs' not found

15-49 prevalence by district

indicators %>%
  filter(age_group == "Y015_049",
         indicator == "prevalence",
         area_level == 4) %>%
  ggplot(aes(fill = mode)) +
  geom_sf() +
  viridis::scale_fill_viridis(labels = scales::percent_format()) +
  th_map() +
  facet_wrap(~sex)
#> Error in eval(expr, envir, enclos): object 'indicators' not found

15-49 prevalence by Zone

indicators %>%
  filter(age_group == "Y015_049",
         ## sex == "both",
         indicator == "prevalence",
         area_level == 2) %>%
  ggplot(aes(fill = mean)) +
  geom_sf() +
  viridis::scale_fill_viridis(labels = scales::percent_format()) +
  th_map() +
  facet_wrap(~sex)
#> Error in eval(expr, envir, enclos): object 'indicators' not found

Age-specific prevalence, national

indicators %>%
  dplyr::filter(area_level == 0,
         sex != "both",
         age_group %in% get_five_year_age_groups(),
         calendar_quarter == "CY2023Q4",
         indicator == "prevalence") %>%
  left_join(get_age_groups()) %>%
  mutate(age_group = fct_reorder(age_group_label, age_group_sort_order)) %>%
  ggplot(aes(age_group, mean, ymin = lower, ymax = upper, fill = sex)) +
  geom_col(position = "dodge") +
  geom_linerange(position = position_dodge(0.8)) +
  scale_fill_brewer(palette = "Set1") +
  scale_y_continuous(labels = scales::percent_format(1)) +
  facet_wrap(~area_name) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1.0, vjust = 0.5))
#> Error in eval(expr, envir, enclos): object 'indicators' not found

15-64 ART coverage by district

indicators %>%
  filter(age_group == "Y015_064",
         area_level == 4,
         indicator == "art_coverage") %>%
  ggplot(aes(fill = mean)) +
  geom_sf() +
  viridis::scale_fill_viridis(labels = scales::percent_format()) +
  th_map() +
  facet_wrap(~sex)
#> Error in eval(expr, envir, enclos): object 'indicators' not found

Age-specific ART coverage, national

indicators %>%
  dplyr::filter(area_level == 0,
         sex != "both",
         age_group %in% get_five_year_age_groups(),
         indicator == "art_coverage",
         calendar_quarter == "CY2023Q4") %>%
  left_join(get_age_groups()) %>%
  mutate(age_group = fct_reorder(age_group_label, age_group_sort_order)) %>%
  ggplot(aes(age_group, mean, ymin = lower, ymax = upper, fill = sex)) +
  geom_col(position = "dodge") +
  geom_linerange(position = position_dodge(0.8)) +
  scale_fill_brewer(palette = "Set1") +
  scale_y_continuous(labels = scales::percent_format(1)) +
  facet_wrap(~calendar_quarter) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1.0, vjust = 0.5))
#> Error in eval(expr, envir, enclos): object 'indicators' not found

ART coverage by age/sex and region

indicators %>%
  filter(area_level == 1,
         sex != "both",
         age_group %in% get_five_year_age_groups(),
         indicator == "art_coverage",
         calendar_quarter == "CY2023Q4") %>%
  left_join(get_age_groups()) %>%
  mutate(age_group = fct_reorder(age_group_label, age_group_sort_order)) %>%
  ggplot(aes(age_group, mean, ymin = lower, ymax = upper, fill = sex)) +
  geom_col(position = "dodge") +
  geom_linerange(position = position_dodge(0.8)) +
  scale_fill_brewer(palette = "Set1") +
  scale_y_continuous(labels = scales::percent_format(1)) +
  facet_wrap(~area_name) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1.0, vjust = 0.5))
#> Error in eval(expr, envir, enclos): object 'indicators' not found

Bubble plot prevalence and PLHIV

indicators %>%
  filter(age_group == "Y015_064",
         area_level == 2,
         indicator %in% c("prevalence", "plhiv"),
         calendar_quarter == "CY2023Q4") %>%
  select(sex, center_x, center_y, indicator_label, mean) %>%
  spread(indicator_label, mean) %>%
  ggplot() +
  geom_sf() +
  geom_point(aes(center_x, center_y, colour = `HIV prevalence`, size = PLHIV)) +
  viridis::scale_color_viridis(labels = scales::percent_format()) +
  th_map() +
  facet_wrap(~sex)
#> Error in eval(expr, envir, enclos): object 'indicators' not found