mcmc_prelim_fit
mcmc_prelim_fit.RdTest multiple sets of parameters randomly drawn from range between maximum and minimum values in order to find approximate values giving maximum posterior likelihood
Usage
mcmc_prelim_fit(
  n_iterations = 1,
  n_param_sets = 1,
  n_bounds = 1,
  params_data = list(),
  input_data = list(),
  obs_sero_data = list(),
  obs_case_data = list(),
  mode_start = 1,
  time_inc = 1,
  n_reps = 1,
  enviro_data_const = list(),
  enviro_data_var = list(),
  deterministic = TRUE,
  mode_time = 0,
  mode_parallel = FALSE,
  cluster = NULL,
  plot_graphs = FALSE
)Arguments
- n_iterations
 = Number of times to run and adjust maximum/minimum
- n_param_sets
 = Number of parameter sets to run in each iteration
- n_bounds
 = Number of parameter sets (with highest likelihood values) to take at each iteration to create new maximum/minimum values
- params_data
 TBA
- input_data
 List of population and vaccination data for multiple regions (created using data input creation code and usually loaded from RDS file)
- obs_sero_data
 Seroprevalence data for comparison, by region, year & age group, in format no. samples/no. positives
- obs_case_data
 Annual reported case/death data for comparison, by region and year, in format no. cases/no. deaths
- mode_start
 Flag indicating how to set initial population immunity level in addition to vaccination
If mode_start = 0, only vaccinated individuals
If mode_start = 1, shift some non-vaccinated individuals into recovered to give herd immunity (stratified by age)- time_inc
 time increment in days (must be 1 or 5)
- n_reps
 Number of repetitions
- enviro_data_const
 Data frame of values of constant environmental covariates (columns) by region (rows)
- enviro_data_var
 List containing values of time-varying environmental covariates (TBA)
- deterministic
 TRUE/FALSE - set model to run in deterministic mode if TRUE
- mode_time
 TBA
- mode_parallel
 TRUE/FALSE - indicate whether to use parallel processing on supplied cluster for speed
- cluster
 Cluster of threads to use if mode_parallel = TRUE
- plot_graphs
 TRUE/FALSE - plot graphs of evolving parameter space '