This wrapper has been created so that several estimate_R
objects can
be plotted at the same time.
estimate_R_plots(..., legend = FALSE)
Arguments of
plot.estimate_R
, but in addition,
parameter x
can be a objects of class estimate_R
(obtained as
outputs of functions estimate_R
or
wallinga_teunis
.
If x
is a list, and what='R'
or what='all'
,
all estimates of R are plotted on a
single graph. This will only work if all the estimate_R
objects in
the list were computed using the same config$t_start
and
config$t_end
A boolean (TRUE by default) governing the presence / absence of legends on the plots
a plot (if what = "incid"
, "R"
, or "SI"
) or a
grob
object (if what = "all"
).
## load data on pandemic flu in a school in 2009
data("Flu2009")
#### COMPARE THE INSTANTANEOUS AND CASE REPRODUCTION NUMBERS ####
## estimate the instantaneous reproduction number
## (method "non_parametric_si")
R_instantaneous <- estimate_R(Flu2009$incidence,
method = "non_parametric_si",
config = list(t_start = seq(2, 26),
t_end = seq(8, 32),
si_distr = Flu2009$si_distr
)
)
## estimate the case reproduction number
R_case <- wallinga_teunis(Flu2009$incidence,
method = "non_parametric_si",
config = list(t_start = seq(2, 26),
t_end = seq(8, 32),
si_distr = Flu2009$si_distr
)
)
#> Warning: setting config$n_sim to 10 as config$n_sim was not specified.
## visualise R estimates on the same plot
estimate_R_plots(list(R_instantaneous, R_case), what = "R",
options_R = list(col = c("blue", "red")), legend = TRUE)
#### COMPARE THE INSTANTANEOUS R ON SLIDING WEEKLY OR BIWEEKLY WINDOWS ####
R_weekly <- estimate_R(Flu2009$incidence,
method = "non_parametric_si",
config = list(t_start = seq(9, 26),
t_end = seq(15, 32),
si_distr = Flu2009$si_distr
)
)
R_biweekly <- estimate_R(Flu2009$incidence,
method = "non_parametric_si",
config = list(t_start = seq(2, 19),
t_end = seq(15, 32),
si_distr = Flu2009$si_distr
)
)
## visualise R estimates on the same plot
estimate_R_plots(list(R_weekly, R_biweekly), what = "R",
options_R = list(col = c("blue", "red")), legend = TRUE)