Tune hyperparameters by cross-validation
tune_hyperparameters_optim.Rd
Subsample sites, build time-based folds and optimise the mean predictive log-likelihood using `optim` with `L-BFGS-B` bounds.
Arguments
- obs_data
Data frame with one row per site-time. Must contain at least `id`, `t`, `y_obs`, `mu_infer` and `f_infer`.
- coordinates
Data frame with site-level information including `id`.
- id_col
Name of the site identifier column.
- time_col
Name of the time column.
- n_sites_sample
Number of sites to randomly sample for tuning.
- K_folds
Number of cross-validation folds.
- init
Initial hyperparameter values.
- lower
Lower bounds for hyperparameters.
- upper
Upper bounds for hyperparameters.
- seed
Random seed for reproducibility.
Examples
if (FALSE) { # \dontrun{
init <- c(space = 3, t_per = 4, t_long = 12)
res <- tune_hyperparameters_optim(
obs_data = obs_data,
coordinates = coordinates,
n_sites_sample = 20,
K_folds = 10,
init = init,
lower = c(space = 0.01, t_per = 0.1, t_long = 1),
upper = c(space = 100, t_per = 100, t_long = 24)
)
res$best_theta
} # }