Skip to contents

All functions

Amv()
Observed-system matvec: (S K S^T + diag(noise)) v
M_inv()
Diagonal (Jacobi) preconditioner application
bounds()
Compute quantile bounds for GP-based count draws
data_complete()
Complete site-time combinations
data_initial_par()
Initialise model parameters
data_missing()
Drop sites with missing data
data_observed_summary()
Calculate observed summary statistics
data_order_index()
Order data and assign identifiers
data_process()
Process raw epidemiological data
fill_vector()
Fill observed values into a full vector
fit()
Fit hyperparmeters
get_spatial_distance()
Pairwise spatial distances
get_temporal_distance()
Pairwise temporal distances
gp_build_state()
Build state object
gp_draw()
One posterior draw of the intensity surface
gp_posterior_mean()
Posterior mean of the intensity surface
kdiag_from_factors()
Kronecker diadiagonalg
kron_mv()
Fast Kronecker–product matrix–vector multiply (times vary fastest)
pcg()
Preconditioned Conjugate Gradient (PCG) solver for the observed system
periodic_kernel()
Periodic kernel
quick_mvnorm()
Quick multivariate normal samples over two dimensions
quick_mvnorm_chol()
Quick multivariate normal samples over two dimensions (cholesky precomputed)
rbf_kernel()
Radial basis function kernel
regularise()
Add a small ridge to a square matrix
space_kernel()
Estimate the spatial kernel
time_kernel()
Estimate the temporal kernel