Skip to contents

All functions

Amv()
Observed-system matvec: (S K S^T + diag(noise)) v
M_inv()
Diagonal (Jacobi) preconditioner application
data_complete()
Complete site-time combinations
data_initial_par()
Initialise model parameters
data_missing()
Drop sites with missing data
data_observed_summary()
Calculate observed summary statistics
data_order_index()
Order data and assign identifiers
data_process()
Process raw epidemiological data
fill_vector()
Fill observed values into a full vector
fit()
Fit a spatiotemporal GP to log–counts (matrix-free PCG)
get_spatial_distance()
Pairwise spatial distances
get_temporal_distance()
Pairwise temporal distances
infer_space_kernel_params()
Estimate spatial RBF length scale from empirical correlations
infer_time_kernel_params()
Estimate time-kernel (periodic × RBF) parameters from empirical ACF
kron_mv()
Fast Kronecker–product matrix–vector multiply (times vary fastest)
llh()
Hessian of the (log posterior) for Poisson log-Gaussian model
make_time_folds()
Create contiguous time folds
make_time_folds_interleave()
Create interleaved time folds
pcg()
Preconditioned Conjugate Gradient (PCG) solver for the observed system
periodic_kernel()
Periodic kernel
quick_mvnorm()
Quick multivariate normal samples over two dimensions
rbf_kernel()
Radial basis function kernel
regularise()
Add a small ridge to a square matrix
space_kernel()
Estimate the spatial kernel
time_kernel()
Estimate the temporal kernel
tune_hyperparameters_optim()
Tune hyperparameters by cross-validation