Package index
-
Amv()
- Observed-system matvec: (S K S^T + diag(noise)) v
-
M_inv()
- Diagonal (Jacobi) preconditioner application
-
data_complete()
- Complete site-time combinations
-
data_initial_par()
- Initialise model parameters
-
data_missing()
- Drop sites with missing data
-
data_observed_summary()
- Calculate observed summary statistics
-
data_order_index()
- Order data and assign identifiers
-
data_process()
- Process raw epidemiological data
-
fill_vector()
- Fill observed values into a full vector
-
fit()
- Fit a spatiotemporal GP to log–counts (matrix-free PCG)
-
get_spatial_distance()
- Pairwise spatial distances
-
get_temporal_distance()
- Pairwise temporal distances
-
infer_space_kernel_params()
- Estimate spatial RBF length scale from empirical correlations
-
infer_time_kernel_params()
- Estimate time-kernel (periodic × RBF) parameters from empirical ACF
-
kron_mv()
- Fast Kronecker–product matrix–vector multiply (times vary fastest)
-
llh()
- Hessian of the (log posterior) for Poisson log-Gaussian model
-
make_time_folds()
- Create contiguous time folds
-
make_time_folds_interleave()
- Create interleaved time folds
-
pcg()
- Preconditioned Conjugate Gradient (PCG) solver for the observed system
-
periodic_kernel()
- Periodic kernel
-
quick_mvnorm()
- Quick multivariate normal samples over two dimensions
-
rbf_kernel()
- Radial basis function kernel
-
regularise()
- Add a small ridge to a square matrix
-
space_kernel()
- Estimate the spatial kernel
-
time_kernel()
- Estimate the temporal kernel
-
tune_hyperparameters_optim()
- Tune hyperparameters by cross-validation