Preconditioned Conjugate Gradient (PCG) solver for the observed system
pcg.Rd
In plain terms: solves the big linear system that gives the GP weights using only matrix–vector products—no huge matrices, no explicit inverse.
Arguments
- b
Right-hand side vector (observed length \(m\)).
- obs_idx
Integer indices of observed entries in the full vector.
- N
Total length of the full vector.
- space_mat
Spatial kernel matrix.
- time_mat
Temporal kernel matrix.
- noise_var
Scalar or length-\(m\) nugget on the observed scale.
- kdiag_full
Vector \(\mathrm{diag}(K)\) of length \(N\).
- tol
Relative residual tolerance for convergence (default `1e-8`).
- maxit
Maximum number of iterations (default `10000`).