Skip to contents

Builds the curvature matrix used for uncertainty—combining the GP prior and the Poisson likelihood—at a given latent vector `f`.

Usage

llh(f, dist_k_inv, time_k_inv)

Arguments

f

Numeric vector of latent values (length \(n \times nt\)).

dist_k_inv

Inverse spatial kernel (precision) matrix.

time_k_inv

Inverse temporal kernel (precision) matrix.

Value

A dense square matrix \(H\) of size `length(f)` × `length(f)`.

Details

Technically: returns the Hessian $$H = -\Sigma^{-1} - \mathrm{diag}(\exp(f))$$ where \(\Sigma^{-1} = \text{dist\_k\_inv} \otimes \text{time\_k\_inv}\). This is the Hessian of the log posterior (negative definite).