Observed-system matvec: (S K S^T + diag(noise)) v
Amv.Rd
Takes an observed-length vector and applies the GP covariance plus a per-observation noise (nugget), all without building any big matrices.
Details
Technically: for \(K = \mathrm{space}\,\otimes\,\mathrm{time}\), returns
$$S\,K\,S^{\mathsf T}\,v \;+\; \operatorname{diag}(\sigma^2)\,v,$$
i.e., the observed block of the GP plus a diagonal nugget. Implemented
matrix-free as kron_mv(with_nas(v, obs_idx, N), space_mat, time_mat)[obs_idx] + noise_var * v
,
where \(S^{\mathsf T}\) “scatters’’ into the full vector and \(\sigma^2\)
denotes the per-observation noise.