Fit distribution to match target usage using non-linear optimisation. This assumes an exponentially distributed net loss function and randomly correlated net distribution.
fit_usage.Rd
Fit distribution to match target usage using non-linear optimisation. This assumes an exponentially distributed net loss function and randomly correlated net distribution.
Usage
fit_usage(
target_usage,
target_usage_timesteps,
distribution_timesteps,
distribution_init = rep(0, length(distribution_timesteps)),
distribution_lower = rep(0, length(distribution_timesteps)),
distribution_upper = rep(1, length(distribution_timesteps)),
timesteps = max(c(target_usage_timesteps, distribution_timesteps)),
half_life = 5 * 365,
...
)
Arguments
- target_usage
Target usage
- target_usage_timesteps
Target usage time points
- distribution_timesteps
A vector of distribution time steps
- distribution_init
Starting distribution for optimiation
- distribution_lower
Lower bound on distributions (default = 0)
- distribution_upper
Upper bound on distribution (default = 1)
- timesteps
Net loss vector
- half_life
Net retention half life
- ...
Further arguments to pass to the cobyla