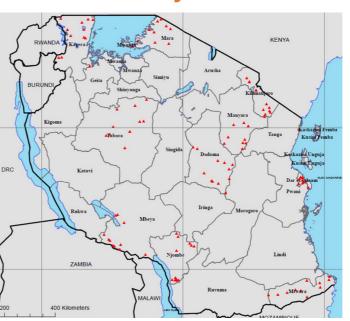

Malaria Molecular Surveillance Study Design Workshop

Module 4: Dealing with over-dispersion in multicluster studies



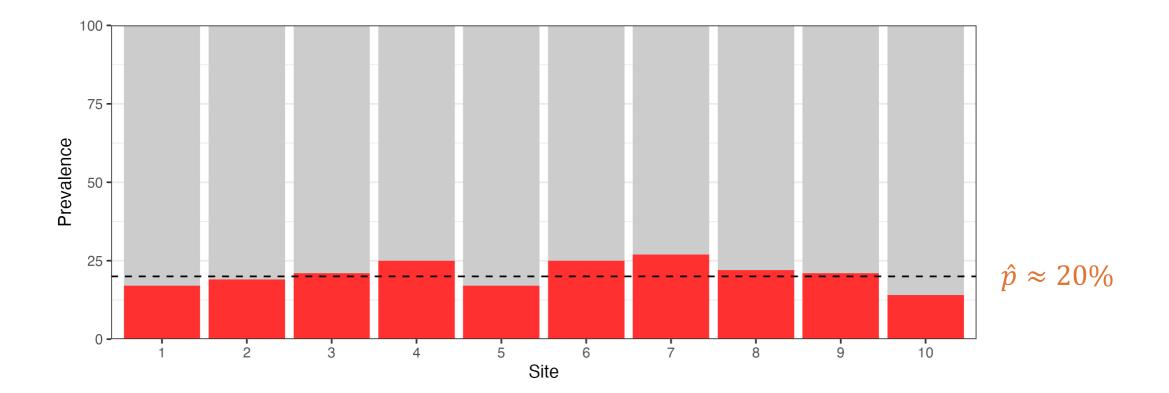
In a multi-cluster study...

- We conduct the study at several sites (clusters)
- We aim to draw conclusions at a higher level than the site

We can combine information across sites

- Regional-level estimates aim to draw conclusion about the wider population
- Interventions are often delivered at regional level

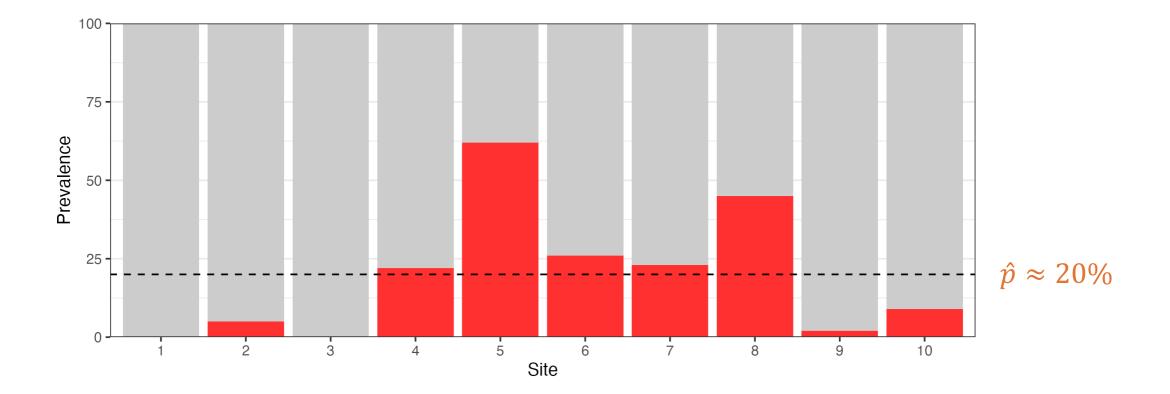
Or we can explore differences between sites


- Are there geographic trends?
- What is the geographic scale of the threat?
- Can we identify cluster-level covariates?

Over-dispersion

- Prevalence study over 10 sites
- 100 samples per site
- global prevalence of 20%

This is what the data spread looks like when samples are perfectly **independent**



Over-dispersion

- Prevalence study over 10 sites
- 100 samples per site
- global prevalence of 20%

This is what data really look like!

Overdispersion

Sites are more different than we would expect on average

Intra-cluster correlation

People within sites are more **similar** than we would expect on average

- Similar behaviours/customs
- Similar occupations
- Shared vector reservoirs
- Genetic similarities
- Similar access to healthcare
- Local transmission and outbreaks

1. Design effect

2. Effective sample size

3. Intra-cluster correlation coefficient

What is the variance of my data?

$D_{\rm eff}$ =

What variance would I expect if samples were independent?

*D*_{eff}

What is the variance of my data?

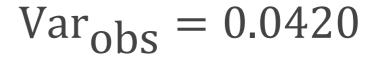
What variance would I expect if samples were independent?

The design effect is a measure statistical **inefficiency**. A value of $D_{eff} = 1$ is gold standard (although D_{eff} can be less than 1).

$$D_{\rm eff} = \frac{\rm Var_{\rm obs}}{\rm Var_{\rm SRS}}$$

$$D_{\text{eff}} = \frac{\text{Var}_{\text{obs}}}{\text{Var}_{\text{SRS}}} = \frac{s^2}{\frac{1}{c}\sum_{i=1}^{c}\frac{\hat{p}(1-\hat{p})}{n_i}}$$

 $s^2 =$ sample variance


- $\hat{p} =$ global prevalence estimate
- c = number of clusters
- n_i = sample size in i^{th} cluster

Site	Sample size	Prevalence
1	60	0.00
2	80	0.05
3	70	0.00
4	100	0.22
5	40	0.62
6	60	0.26
7	50	0.23
8	90	0.09

See the Excel file <u>Overdispersion_example.xlsx</u> to work through steps (available on course website)

Site	Sample size	Prevalence
1	60	0.00
2	80	0.05
3	70	0.00
4	100	0.22
5	40	0.62
6	60	0.26
7	50	0.23
8	90	0.09

MRC Centre for Global Infectious Disease Analysis

$Var_{SRS} =$	0.0024
---------------	--------

$$D_{\rm eff} = 17.73$$

That's great...but what does a value $D_{eff} = 17.73$ really mean?

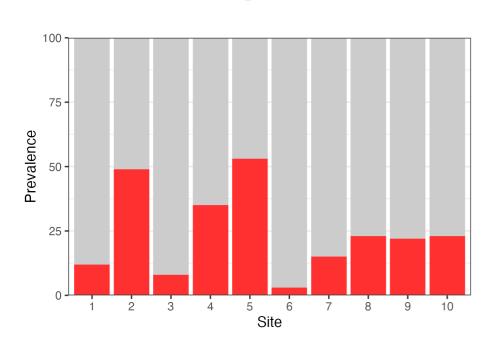
That's great...but what does a value $D_{eff} = 17.73$ really mean?

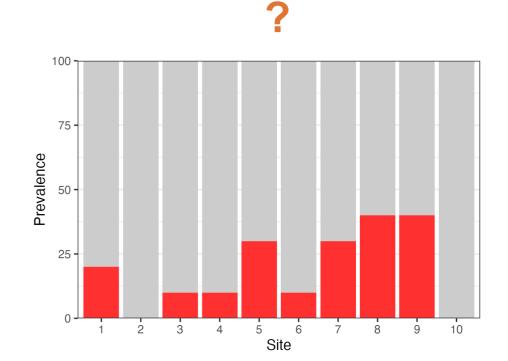
$$N_{\rm eff} = \frac{N}{D_{\rm eff}}$$

That's great...but what does a value $D_{eff} = 17.73$ really mean?

$$N_{\rm eff} = \frac{N}{D_{\rm eff}}$$

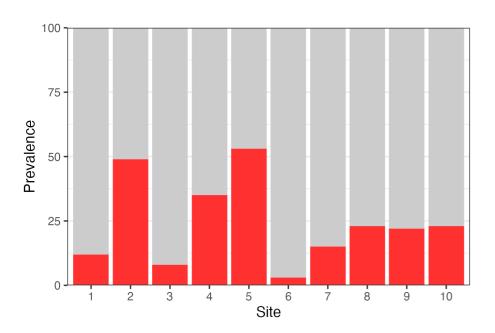
N_{eff} is the number of completely independent samples you would need to achieve the same level of precision as your more complex study design

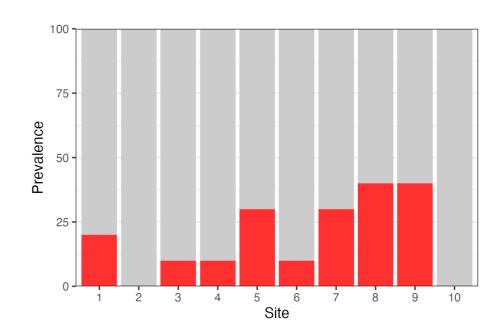



Back to <u>Overdispersion_example.xlsx</u>

One of these was generated with N = 100the other with N = 1000 but $N_{eff} = 100$

Which one is which?




One of these was generated with
$$N = 100$$

the other with $N = 1000$ but $N_{eff} = 100$

Which one is which?

N = 1000

Overdispersion

Sites are more different than we would expect on average

Intra-cluster correlation

People within sites are more **similar** than we would expect on average The ICC (r) is a value between 0 and 1 that represents the correlation between individuals in the same site.

We can write the design effect in terms of the ICC:

$$D_{\text{eff}} = 1 + (\bar{n} - 1)r$$
 $n = \text{average cluster size}$
 $r = \text{ICC}$

We can write the ICC in terms of the design effect:

$$r = \frac{D_{\text{eff}} - 1}{\bar{n} - 1}$$

Back to <u>Overdispersion_example.xlsx</u>

Recap

- 1. Design effect
 - A simple measure of statistical inefficiency
- 2. Effective sample size
 - An intuitive way of measuring efficiency
- 3. Intra-cluster correlation coefficient
 - Facilitates comparison between studies

New versions of formulae (precision, power, sample size etc.) that take over-dispersion into account:

Generalization of Wald interval:

$$\hat{p} \pm \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} D_{\text{eff}}$$

In the design stage, this means we will have to **assume** a value of the design effect, or the ICC

Format: Interactive R code, accessed through the web

- Work with the NMCP of Tanzania to analyse data from a multi-site pfhrp2/3 deletion prevalence study
- Detect and quantify over-dispersion in the data
- Plan a new study that accounts for over-dispersion at the design stage

https://tinyurl.com/bd4um5mj