

Malaria Molecular Surveillance Study Design Workshop

Module 3: Hypothesis testing and power

Sometimes we are simply trying to estimate something, e.g. prevalence. **We have seen how to perform sample size calculation based on precision arguments**.

In other cases, we have a specific question that we want to answer. This questions may be phrased as a **null hypothesis test**.

Sometimes we are simply trying to estimate something, e.g. prevalence. **We have seen how to perform sample size calculation based on precision arguments**.

In other cases, we have a specific question that we want to answer. This questions may be phrased as a **null hypothesis tests**.

A null hypothesis (H_0) is a statement of **no effect or difference** between groups. This is often a statement that nothing interesting is happening*

Rather than trying to prove there is an effect, in null hypothesis testing we try to disprove that there is no effect.

*Sometimes it can be very interesting if the null hypothesis is true

• Q: Are certain genetic variants associated with gender, or occupation?

• Q: Does vaccine efficacy vary based on genetic markers?

 H_0 : Prevalence has remained the same over the last 5 years.

• Q: Are certain genetic variants associated with gender, or occupation?

• Q: Does vaccine efficacy vary based on genetic markers?

 H_0 : Prevalence has remained the same over the last 5 years.

- Q: Are certain genetic variants associated with gender, or occupation? H_0 : There is no association between genetic variant and gender or occupation.
- Q: Does vaccine efficacy vary based on genetic markers?

 H_0 : Prevalence has remained the same over the last 5 years.

- Q: Are certain genetic variants associated with gender, or occupation? H_0 : There is no association between genetic variant and gender or occupation.
- Q: Does vaccine efficacy vary based on genetic markers? H_0 : Vaccine efficacy is the same irrespective of genetic markers.

Each test has a **test statistic**

One-sample z-test for proportions: tests prevalence against a known value

Each test has a **test statistic**

One-sample z-test for proportions: tests prevalence against a known value H_0 : The population prevalence equals p_0

Each test has a **test statistic**

One-sample z-test for proportions: tests prevalence against a known value H_0 : The population prevalence equals p_0

$$
Z = \frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}
$$

 α sets the **false positive rate** of a test. Using α we can control how often we incorrectly conclude that there is a real effect when there is none.

 α sets the **false positive rate** of a test. Using α we can control how often we incorrectly conclude that there is a real effect when there is none.

In power analysis, we also specify an **alternative hypothesis**

- **: The population prevalence equals**
- H_1 : The population prevalence equals p , which is different from p_0

In power analysis, we also specify an **alternative hypothesis**

- **: The population prevalence equals**
- H_1 : The population prevalence equals p , which is different from p_0

For example…

I want to test if the prevalence of *pfcrt* K76T mutations is significantly different from 10%. When powering this test, I assume the true prevalence of K76T mutations is 15%.

Power is the probability of **correctly rejecting** the null hypothesis. It is the chance that we find something interesting, given that it is there.

$$
Power = 1 - \phi(z_{1-\alpha/2} - E[Z])
$$

Power as a function of sample size

$$
Power = 1 - \phi \left(z_{1-\alpha/2} - \frac{|p-p_0|}{\sqrt{\frac{p(1-p)}{n}}} \right)
$$

Power as a function of sample size

Power =
$$
1 - \phi \left(z_{1-\alpha/2} - \frac{|p-p_0|}{\sqrt{\frac{p(1-p)}{n+1}}} \right)
$$
 Power varies as a function of sample size

Power as a function of sample size

Power =
$$
1 - \phi \left(z_{1-\alpha/2} - \frac{|p-p_0|}{\sqrt{\frac{p(1-p)}{n+1}}}\right)
$$
 Power varies as a function of sample size

Power curves

Power curves

Sample size formulae

$$
Power = 1 - \phi \left(z_{1-\alpha/2} - \frac{|p - p_0|}{\sqrt{\frac{p(1-p)}{n}}} \right)
$$

Can we reverse-engineer this to find the value of n that achieves a target power?

Sample size formulae

$$
Power = 1 - \phi \left(z_{1-\alpha/2} - \frac{|p - p_0|}{\sqrt{\frac{p(1-p)}{n}}} \right)
$$

Can we reverse-engineer this to find the value of n that achieves a target power?

$$
n = (z_{1-\beta} + z_{1-\frac{\alpha}{2}})^2 \frac{p(1-p)}{(p-p_0)^2}
$$

Where $\beta = 1 -$ Power. For 80% power, we find $z_{1-\beta} = 0.84$

- We can ask questions using **null hypothesis tests**
- A null hypothesis is a statement of **no effect/difference** between groups
- The significance level α controls the **false-positive rate**
- **Power** is the true positive rate. It is the chance of **correctly rejecting the null hypothesis**.
- Power increases with sample size. We can use power curves or sample size formulae to choose a value of n

Format: Interactive R code, accessed through the web

- Short quiz on hypothesis testing
- **Test for change in prevalence**
	- Calculate power
	- Calculate minimum sample size
- **Test for detection of rare** *pfk13* **variant**
	- Calculate power
	- Calculate minimum sample size

https://tinyurl.com/bd4um5mj